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ABSTRACT

The Depth from Defocus (DFD) imaging technique is used to measure the size and number concentration of particles

in dispersed two-phase flows, but until now it has primarily been applied to low concentration particle images. This

study explores how the technique can be extended to handle overlapping images caused by neighboring particles,

significantly broadening the application scope of the DFD technique and enabling measurements at higher particle

number/volume concentrations. The processing algorithms are experimentally validated using a dedicated appara-

tus that can systematically vary particle size, shape, and degree of image overlap. Additionally, this study explores

the use of Convolutional Neural Networks (CNN) for this task, comparing these results with those obtained using

conventional analyses in terms of accuracy, tolerable concentration limits, and computational speed. This approach

requires a large teaching dataset of images, which is only practical and feasible if the dataset can be synthetically gen-

erated. An image generation procedure for out-of-focus neighboring spherical particles, resulting in a known blurred

image overlap, is therefore first developed. This procedure is validated using laboratory images with known particle

size distribution, position, and image overlap before creating the teaching dataset. The trained processing scheme is

then applied to both synthetic datasets and experimental data, allowing the evaluation of the technique’s limits in

terms of image overlap and tolerable volume concentration, as a function of particle size distribution.

1. Introduction

The technique of obtaining depth and size information from defocused blurry images of particles
is known as Depth from Defocus (DFD). This concept was initially proposed in Pentland (1987)
and has since become one of the popular depth estimation techniques, parallel to stereo vision and
holographic imaging. This method can be used to determine the size and location of spherical
particles in a fluid, even when their position is beyond the depth of field limit; thus, out of focus.
Moreover, this allows all particles within a well-defined volume to be counted and sized, allowing
accurate measurement of number and volume concentration.
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The DFD principle can be implemented through various optical means to obtain defocused im-
ages, including changing aperture between two exposures, thus inducing a controlled defocus in
the formed images. Alternatively, the technique has been realized using either one or two cameras.
In both cases the goal is to identify and size particles over a three-dimensional volume, while also
determining their coordinates. With appropriately fast cameras, it is possible to resolve the trajec-
tory of the particles in time using particle tracking velocimetry (Willert & Gharib, 1992; Murata &
Kawamura, 1999; Bao & Li, 2011), although this aspect will not be elaborated further in the present
study.

First defocus systems for particle measurement used two images, varying the defocus blur by
adjusting imaging system parameters between images, such as aperture, focal length, and the
distance from the lens to the camera imaging plane (Subbarao & Gurumoorthy, 1988; Surya &
Subbarao, 1993). In the study by Lebrun et al. (1994), a beam splitter was employed to evenly
divide the imaging rays into two cameras. By adjusting the spacers connecting the dual camera
setup, it became possible to simultaneously capture two images of particles with different degrees
of blur at a specific moment, with one camera. The disparity in blur between these two images was
used to assess defocus ambiguity. In terms of image processing, various methods were employed
in the early stages, including spatial domain deconvolution restoration (Ens & Lawrence, 1991) and
frequency domain processing, using a Fourier transformation (Zhou, Luo, et al., 2020), to identify
the degree of blur in particle images, corresponding to their depth position. More recent work
involving two cameras employed a single normalized gray level threshold and two calibrated
size-independent relations to measure size and depth location (Zhou, Tropea, et al., 2020). The
sensitivity of this technique to a large number of optical and system realization parameters has
been investigated in Zhou et al. (2021) and has been used for shock-drop interaction studies in
Sharma et al. (2023).

More attractive in terms of equipment complexity is the one camera realization, realized in a num-
ber of configurations in the past (Subbarao, 1988; Cierpka et al., 2010). One particular configura-
tion uses a cylindrical lens in the imaging optics, such that the out-of-focus condition results in an
astigmatism to determine the position of the particle along the optical axis (Barnkob et al., 2015;
Barnkob & Rossi, 2020). Recently, neural networks have been adopted to deal with these out-of-
focus images (Barnkob et al., 2021; Zhang et al., 2023). In addition, there is a method for particle
depth position measurement by employing specially shaped aperture configurations, primarily
including three-hole apertures and annular apertures (Willert & Gharib, 1992; Pereira & Gharib,
2002; Levin et al., 2007). The arrangements of these apertures allow for determining whether parti-
cle coordinates are in front of or behind the object plane. On the other hand, the emphasis of these
studies has not been placed on also determining the size of the particles. Jatin Rao et al. (2024)
used a novel theoretical calibration method to obtain the relationship between gray level gradient
and blur kernel size. This theoretical analysis method was employed by Xu et al. (2024) to analyze
overlapping particle images.
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Recently, numerous studies have applied deep learning techniques to measure out-of-focus par-
ticles. Wang et al. (2022a) examined the sizing of out-of-focus spherical particles using a deep-
learning method, which was extended to location measurement (Wang et al. (2022b)). However,
the present study focuses on determining the size and position of spherical particles in a two-phase
flow where particle images overlap, with primary blurring caused by out-of-focus blurring. Sachs
et al. (2023) and Ratz et al. (2023) utilized deep neural networks (DNN) for depth and position
measurement of seeding particles in microchannels, and Zhang et al. (2023) used deep learning
and generative adversarial networks (GAN) to detect particle depth positions and deblurring from
defocused images.

2. Measurement Principle

2.1. Analytic Relations for a Single Camera DFD

This description will intentionally be kept brief, because it simply summarizes the work in Jatin Rao
et al. (2024). Typical images from in-focus and out-of-focus particles are illustrated in Fig. 1. From
this figure, it is evident that the degree of image blur depends on the out-of-focus distance z from
the object plane. However, also the gradient of the gray level changes with z. These blurred im-
ages can be described by a convolution of the focused image f(x, y) of a particle with a blur kernel
h(x, y) (Blaisot & Yon, 2005; Zhou, Tropea, et al., 2020). The intensity gt at any location on the
sensor plane (x, y) is then evaluated as:

gt(x, y) = f(x, y)⊛ h(x, y) (1)

where f(x, y) is a normalized intensity of the in-focus particle on the image plane

f(x, y) = 0, if outside particle contour

= 1, if inside particle contour
(2)

The particle dimensions on the image plane are related to the actual size through the magnification
factor of the optical system, M . The blur kernel h(x, y) can be approximated by a Gaussian function
with σ as the standard deviation (Junjie et al., 2023):

h(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3)

This assumes that the point spread function has a central peak much narrower in width than σ,
which is fulfilled in typical DFD optical systems (Jatin Rao et al., 2024). The standard deviation σ

represents the degree of blur or size of the blur kernel and is proportional to the displacement of
the particle away from the object plane (∆z),

σ = β|z| (4)
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Figure 1. Illustration of particle image and resulting intensity distribution for varying degrees of out-of-focus. Two
quantities are extracted from the images – radius (rt) and intensity gradient (∂gt/∂rt) at a reference intensity value

(gt=0.5), both of which decrease with increasing depth from the object plane. σ̃ is a dimensionless σ defined in Eq. (5).

where β describes the proportionality and is constant for a given optical system. Furthermore, we
assume that telecentric lenses are used on both the illumination and receiving sides of the optical
system; hence, the magnification does not change with particle z position.

Given this description of the blurred images, there are several avenues to follow with the aim
of determining the original image from the defocussed blurred image gt(x, y). Conventional ap-
proaches use a non-blind deconvolution. This is non-blind since the blur kernel is known, arising
from Gaussian defocus blurring and the point spread function (which in practical systems is neg-
ligibly small). The most common non-blind deblurring methods employ the Wiener filter (Wiener
(1949)) or the Richardson-Lucy algorithm (Richardson (1972)). More recently, the performance of
these conventional approaches has been significantly enhanced by integrating them with learned
deep features (Dong et al. (2021)). Although these approaches are capable of reconstructing the
high resolution, deblurred images, the location of the particle on the z axis is not available. For
this reason, a different approach is used in the present study in that the convolution integral is ex-
plicitly solved for spherical particles. Having this, and a quantitative calibration of the parameter
β, the particle z position can be found.

For spherical particles the convolution integral can be solved and using the following dimension-
less variables

ρ̃ =
r

do
, ρ̃t =

rt
do
, σ̃ =

σ

do
(5)

the integral can be expressed in dimensionless form as

gt (ρ̃t) =
1

σ̃2

∫ 1/2

0

e−
ρ̃2+ρ̃2t
2σ̃2 Io

(
ρ̃ρ̃t
σ̃2

)
ρ̃dρ̃ (6)
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where Io is the zeroth order modified Bessel function of the first kind and d0 is the true particle
diameter (Rao, Sharma, Basu, & Tropea, 2024).

From the particle image, two quantities are extracted – the radius (rt) and intensity gradient
(∂gt/∂rt) at a reference intensity value, e.g., gt = 0.5. Both of these quantities decrease as the
particle is further displaced from the object plane (z = 0) (Fig. 1). This suggests that the gray level
gradient can be used to estimate the parameter σ in the blur kernel. In Jatin Rao et al. (2024) a
novel measurable dimensionless radius is proposed (Rao, Sharma, Tropea, & Basu, 2024):

R̃t =

(
ρ̃t

(ρ̃t)gt=0.5

)
σ̃

=

(
rt

(rt)gt=0.5

)
σ̃

(7)

where (rt)gt=0.5 is the radius at the reference intensity. The proposed functional form of the analytic
function is

G̃ =

∣∣∣∣ ∂gt
∂R̃t

∣∣∣∣
gt=0.5

=

∣∣∣∣rt∂gt∂rt

∣∣∣∣
gt=0.5

= f2 (σ̃) (8)

From this dimensionless version of intensity gradient |∂gt/∂R̃t| = |rt∂gt/∂rt| at the reference in-
tensity (subscript gt = 0.5 is omitted from now on), we can estimate the dimensionless depth,
expressed as a dimensionless standard deviation of the blurring σ̃. Note that in Jatin Rao et al.
(2024), a limiting value of σ̃ = 0.35 was recommended, below which the size measurement would
be reliable.

Another function is necessary to estimate ρ̃t from σ̃ at the reference intensity, represented in the
functional form as

ρ̃t = f1(σ̃) (9)

These functions can be further combined in the form ρ̃t = f1(f
−1
2 (G̃)). So the particle diameter do

can be measured after obtaining G̃ and rt from the particle image.

The calibration is necessary not for the size determination, but for the position, i.e., β in Eq. (4).
This calibration consists of moving a reticle target along the z axis while registering the standard
deviation σ, using the function σ̃ = f−1

2 (G̃) and the true particle diameter do.

2.2. Analysis using Convolutional Neural Networks

Training deep learning models typically requires large datasets, which implies a significant amount
of manual annotation. In some commonly used segmentation scenarios for Mask R-CNN, the ob-
jects to be segmented have clear edges, and datasets for such objects can be annotated using auxil-
iary annotation tools. However, for this application, the edges of the captured out-of-focus particle
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images are difficult for the human eye to discern, making it challenging to accurately delineate
them manually or obtain large training data through more automated methods. Therefore, in the
present study out-of-focus particle images are simulated using the degradation function models
of single particles and overlapping particles mentioned in the previous section, as the dataset in-
put for network training. Gaussian blur convolution with different standard deviations is used to
simulate particles in images with varying degrees of out-of-focus blurring (z positions). For over-
lapping particles, in addition to generating different degrees of blurring, different orientations and
overlap ratios (OLR) (Xu et al. (2024)) are also generated.

Considering that different light intensities, sensitivities of image sensors, and transmittance of me-
dia to particles will affect the grayscale of particles and background in images, random values are
set for the background gray level and particle gray level to ensure that the gray level is uniformly
distributed within a certain range. The pixel diameter of particles is set to a random integer in the
range of 5 to 400, the gray level of particles is a random integer in the range of 0 to 50, and the
gray level of the background is a random integer in the range of 100 to 255. Note that the image is
assumed to have an 8 bit resolution in gray level. Since there is an upper limit to the performance
of the model, such as when the blurring of particles is very high and the gray level difference
between particles and background is very small, the model may have difficulty learning features,
which may lead to a decrease in the accuracy of the trained model. Therefore, an upper limit on
blurring degree is set in the training set.

When using the same Gaussian blur kernel, images of smaller particles have lower contrast with
the background compared to larger particles. Thus, under the same blurring degree, the feature
information of smaller particles is less obvious compared to larger particles. Therefore, different
blur limits are set for particles of different sizes. In the present study, the blur limit of each particle
is set as σ̃ = σ/d0 = 0.35, as in Jatin Rao et al. (2024), based on the ratio of blur kernel standard
deviation to the pixel diameter of the particle, d0. Additionally, to prevent overfitting, Gaussian
noise with a standard deviation of 0.01% is added.

The resolution of each image generated in the training set is 480 px × 480 px, with each image
corresponding to one out-of-focus particle. A total of 51,735 images including different levels of
defocus, different background gray levels, different particle gray levels, and different particle sizes,
were generated; 63,140 images of overlapping particles with different levels of defocus, sizes, and
overlapping orientations were generated. Typical training images are shown in Fig. 2.

The hardware configuration of the training platform consists of an Intel(R) Xeon(R) Silver 4210R
CPU@2.40GHz CPU and an NVIDIA GeForce RTX 2080Ti 11G graphics card. The aforementioned
training set and corresponding labels are input into the network, and training is conducted based
on the pre-trained weights of the MS COCO (Lin et al. (2014)) dataset, which accelerates the con-
vergence speed and reduces the training time, as shown in the training process flow chart of Fig. 3.

Three scales of learning rates were attempted: 0.01, 0.001, and 0.0001. It was found that when
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Figure 2. Typical training images:(a) Single particle original image and mask image; (b) Overlapping particles
original image and mask image.

the learning rate was set to 0.01, the training loss decreased slowly, while when set to 0.0001, the
loss function was difficult to reduce after reaching a certain level, suggesting that the learning rate
may be too low, leading to convergence to a local optimum. Finally, 0.001 was selected as the
learning rate for model training. According to the loss function curve, the overall network loss
initially decreases rapidly, followed by a gradual decrease, tending to converge. After 200 rounds
of training, the network loss stabilizes at around 0.03, indicating that the network has been trained
well at this point. The entire training process took 25 hours.

3. Image Processing Algorithms

3.1. Procedure for Spherical Particles with Overlapping Images

We begin by reviewing the procedure for circular images arising from non-overlapping spherical
particles. For a given normalized gray level (gt) a Wiener filter is firstly applied to reduce the
white noise component. Then the contour of the image is established. This is performed using a
bilinear interpolation, achieving a subpixel resolution. The image is then binarized with threshold
0.5, making all pixels within the contour 1 and all outside 0. Working from this modified image,
the diameter of the circle is computed.

Along the threshold contour the direction of the normal vector pointing outward is found and the
gray level gradient along this vector at the boundary is interpolated and averaged over the entire
contour circumference. However, according to Eq. (2), the sought gradient assumes a background
level of zero (i.e., the background level is completely white), whereas in practice a non-zero back-
ground level exists. Thus, the computed gradient must be scaled with a factor related to the back-
ground gray level in the vicinity of the particle image. This adjusted gradient is then used with
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Figure 3. CNN based particle size and depth measurement process.

function f2 to determine the blur kernel parameter σ̃ and further determine the size and position
of a sphere in the object plane leading to this diameter on the image plane.

If now several spherical particles are in close proximity to one another, i.e., high number/volume
concentration, then they will generate blurred images which are overlapping on the image plane.
To analyse these images, the above algorithmic procedure is extended. First the contour of the
overlapping particle images is determined at a selected gt level, using a bilinear spline interpola-
tion to achieve sub-pixel resolution. An ellipse is fitted to the gt contour, determining a major and
minor axis. Two criteria are then tested before proceeding. If the ratio of major to minor axis is
less than 1.1, then the image is considered to be generated by a single particle and the standard
procedure for analysing a single particle is invoked.

The second criterion is illustrated with Fig. 4, showing exemplary overlapping images of two
neighbouring particles. The normalized gray level gradient around the circumference of the im-
ages is also shown. The two end points of the fitted ellipse are marked as points a and e in the
image. Some smoothing of the gradient curve is performed before proceeding. First a represen-
tative value of the gray scale gradient at each end point is computed by averaging the gradient
over the neighbouring 10 pixels. Then the gray level gradient is averaged over the portion of the
gt-contour, over which the values lie within ±10% of the representative value at the end points a
and e. These portions of the contour used for averaging are marked on the graph of Fig. 4.
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Once the two gray level gradient values and the associated blur kernel parameter σ̃ for each are
determined, the diameter (or radius rt) of each particle image at gt = 0.5 is computed, assuming
circularity of the image and fitting (least squares) a circle to the portion of the gt-contour used for
the above gray level gradient averaging procedure. These two values of each particle, rt and G̃, are
then used to estimate the true sizes of the two particles, and using the calibration constant β, the
z positions of the particles are found. Note that the calibration parameter β is the same for each
particle, only the blur kernel parameter σ̃ may differ.

Figure 4. Normalized gray-level gradient computed from an image arising from two neighbouring particles with
overlapping, blurred images. The two example particles have different z positions, but the same size.

Further discussion of the processing algorithm and subsequent validation requires some definition
of overlap degree and for this the Overlap Ratio (OLR) has been introduced. The overlap ratio is
pictorially depicted in Fig. 5 and is defined as L/2RB. RB is the radius of Particle B and L is
the distance the center of Particle B is offset from an initial distance RA + RB toward the center
of Particle A, with radius RA. An overlap ratio of OLR≤ 0 indicates no overlap and an OLR
> 1 designates complete overlap. Note, by definition, Particle B is always equal to or smaller in
diameter than Particle A.

3.2. Generation of Synthetic Images

To simulate the intensity of a blurred image of a single spherical particle, gt(x, y), a simple convo-
lution of the sharp image, f(x, y), with a blur kernel , h(x, y), suffices(Eq. (1)).

A modified procedure is followed to generate images arising from two or more particles in close
proximity to one another such that their projected images overlap on the sensor plane. First the
coordinates and sizes of the particles are prescribed, yielding two or more different values of σ
according to the different ∆z values (Eq. (4)). This results in different blur kernels, one for each of
the particles. The subsequent procedure is graphically illustrated in Fig. 6.

First, the blurred image of the particle nearest to the backside illumination is generated, using a
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Figure 5. Sketch showing three different overlap degrees of particles A and B. The Overlap Ratio (OLR) is defined as
L/2RB.

convolution of the normalized intensity image of the particle (Eq. (1)). This image is then inverted.
Next, this inverted image is subtracted from the normalized image intensity of the particle nearer
to the imaging side. This subtraction approximates the fact that the second particle is not entirely
illuminated due to the shadowing effect of the first particle. The resulting image is then used as
f(x, y) in Eq. (1) to yield a blurred image. The final result of the overlapping images is then given
by the inversion of the first blurred image minus the blurred image of the second particle. In
principle, this procedure can be extended to more than two particles, always proceeding from the
particles closest to the illumination side of the optical system.

The final image is adjusted to take into account the background illumination, denoted b(x, y), i.e.,

gt = gt + b(x, y). (10)

A background illumination is generally encountered in experiments, effectively altering the gray
level gradient measured for a given blurred image. This is particularly important to consider when
using conventional analysis, since the gray level gradient directly affects the position and size
estimate. This background illumination can be estimated directly from the experimental images.
For synthetic images, typical experimental values or a gray level with random fluctuations within
a certain bit range of values can be used. Specific details of the background illumination used are
given below in the respective sections.

4. Validation and Experiments

4.1. Experimental apparatus

To provide images from particles with known size, position, shape and degree of overlap, the
apparatus schematically pictured in Fig. 7 was used. With this apparatus either one or two sample
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Figure 6. Graphical flowchart describing how the blurred image of multiple particles is generated.

plates can be mounted. The distance between the plates (δ) can be manually adjusted and the
position of the plates can be traversed along the optical (z) axis using a stepper motor. Particles
are placed on the plates before mounting. In this manner both in-focus and out-of-focus images
of the same particles can be acquired. The in-focus images allow the exact shape and size of all
particles on the respective sample plate to be determined. The origin of the z-axis is chosen such
that z = 0 corresponds to the particle on plate A being in focus. The value of the manually adjusted
δ is determined from the stepper motor displacement between the particles on the sample plates A
and B being in focus. Thus, ground truth for both the particle size and position is always available
to evaluate the accuracy of any DFD image processing algorithm.

To put the range of changes in z or δ expressed in millimeters into context, the depth of field for
the optical system can be used for comparison. The depth of field is given approximately as

DOF ≈ 2cf#

(
z0
f

− 1

)
(11)

where c is the circle of confusion, taken here as 0.03 mm, f# is the f-stop (20.8), f = 53 mm is the
focal length of the lens, and the standoff distance z0 = 86 mm. This yields DOF ≈ 0.74 mm.
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Figure 7. Schematic diagram of the experimental apparatus for generating images with known particle sizes,
positions and shapes.

4.2. Validation of synthetic images

The validation of the image generation focuses on the validation of images generated for overlap-
ping dual particles. There is no need to validate the generation of single particle blurred images,
since the simulation uses an exact analytic expression. For images of dual overlapping particles,
comparison can be made to laboratory results.

Before acquiring experimental images, reticles have been positioned at different z locations in the
apparatus shown in Fig. 7, allowing the calibration factor β (Eq. (4)) to be determined. Hence, σ is
known for each z position of the particle. These values of σ and the size of the particles were used
for the synthetic generation of the blurred images.

In Figs. 8(a) and (b) a synthetic image of particles with overlapping blurred images is compared
with a laboratory image. In Fig. 8(c) the gray scale profiles through the centerline of the two particle
images are compared with one another, indicating excellent agreement.

4.3. Validation for particles with overlapping images

Validation of the analysis when overlapping images are acquired is performed using the appara-
tus described above in subsection 4.1 and using the images shown in Fig. 9. These images were
generated by using calibration plates with varying dot sizes. Images were acquired for the three
particle size combinations shown in Fig. 9 with varying OLR and with two values of δ, 0.1 mm
and 0.4 mm. The intention of performing this systematic parameter variation is to provide a first
qualitative impression of the maximum number concentration which can be reliably tolerated by
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Figure 8. (a) Overlapping images obtained using the apparatus shown in Fig. 7; (b) Synthetic generation of two
particles resulting in overlapping images. (c) Comparison of the gray level profiles through the centerline of the two

images.

the DFD technique using this analysis algorithm. The results of this parametric study are shown in
Fig. 10. In each of the four diagrams shown in this figure, the degree of blurring was systematically
varied by changing z. For values of z = 0 Particle A is in focus and if δ = 0, Particle B is also in
focus. The validity limit of the processing algorithm, i.e., σ̃ = 0.35, is shown in each diagram as a
vertical dashed line.

It is clear that in all cases of OLR = 0, the size evaluation is accurate up to the validity limit (and
sometimes beyond). This is perhaps not intuitively obvious, since even with no overlap, the blur
of each particle is mutually affecting the image of the other particle. However, the proposed algo-
rithm eliminates these regions of mutual interaction when estimating σ̃. Furthermore, it appears
that an overlap ratio of 0.4 appears to be tolerable, while still maintaining a size accuracy to within
approx. 5%. Above this value of OLR, size measurements can still be performed, albeit only to
within a lower range of σ̃ (degree of out-of-focus), especially for the smaller particle.

Restricting the OLR to 0.4 and below, the size estimate remains very accurate even with substantial
values of δ, as indicated in Fig. 10d. Finally, it is instructive to compare the range over which
reliable results can be achieved to the nominal DOF of the optical system (0.74 mm). For instance,
for the 100 µm particle, a value of σ/d0 = σ̃ = 0.35 corresponds to approx. 2.95 mm, for the 200µm
particle approx. 5.9 mm. This underlines how effective the DFD technique is in quantifying particle
size far out of the depth of field.



21st LISBON Laser Symposium 2024

Figure 9. Example images with varying overlap ratios of two particles. Particle A has a diameter of 200 µm. Particle
B varies in diameter between 50 µm and 200 µm. Example images for four overlap ratios are shown. The green circles

give the contour at gt = 0.5 and the red circles are the circles fitted to the contour portion used for averaging the
gray-level gradient. In these examples the particles have different z positions; hence different blur kernels.

Likewise, for testin the CNN algorithm, the same set of calibration plate images were used for veri-
fication. The images are first segmented according to the flow chart outlined in Fig. 3. Examples of
the segmented images at varying values of particle size and OLR are shown in Fig. 11. The results
of these validation tests are presented in Fig. 12, comparing results for different OLR, blur degrees,
and the separation δ between two particles.

Examining the various graphs in Fig. 12, it is apparent that the CNN consistently delivers reliable
results for single particle images up to the trained limit of σ̃ = 0.35, irrespective of the particle size.
In this respect, the CNN result is very similar to performance of the conventional processing using
the theoretical solution as presented in Fig. 10, although exhibiting much less scatter with increase
σ̃. At low overlapping ratios (OLR ≤ 0.2), the results continue to be very good, although sizing
errors increase when the two particles are the same size (Fig. 12(c)). Interestingly, the measurement
result is less sensitive to the particle separation (Fig. 12(d)). However, as the OLR increases, the
performance decreases with the degree of out-of-focus, generally exhibiting an underestimation
of the particle size (Fig. 12(a) and (b)). Nevertheless, the technique extends the particle sizing
capability far beyond the conventional depth of focus limit, which in this case is 0.74 mm. To
compare this limit to the normalized σ̃ shown on the graphs of Fig. 12, it is necessary to use Eq. (4),
converting ∆z into σ and then dividing by the particle diameter d0. To do this, the parameter β for
the system is required. In the present case, for the 200 µm particle, the limit σ̃ = 0.35 corresponds
to approx. 2.95 mm.

For purposes of evaluating the tolerable concentration limits now to be examined in section 5, the
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Figure 10. Parametric study in which the degree of blurring is varied by changing z. a), b) and c) uses a Particle A
diameter of 200 µm, a δ = 0.1 mm and a Particle B diameter of 50 µm, 100 µm and 200 µm respectively. d) The OLR is

held constant at 0.4 and δ is varied using the particle diameter combination 100 µm and 200 µm. The vertical black
dashed lines marked on the graphs indicate σ̃ = 0.35, corresponding to the expected limitation of the single camera

DFD technique.

results can be summarized as follows. Particles of all sizes with non-overlapping images can be
reliably sized up to σ̃ = 0.35. Particle pairs with an OLR ≤ 0.2 will also be sized correctly to within
approx. ±5%, and the separation of particles along the z axis does not degrade the size estimates
significantly.

4.4. Example experiment

A second validation of the CNN image processing was performed using a rectangular channel
flow seeded with polystyrene particles of diameter in the order of 100 µm. The flow system is
schematically shown in Fig. 13, whereby the channel was constructed of transparent quartz glass
with dimensions 10 mm (H) x 20 mm (W). The optical system, consisting of an illumination with
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Figure 11. Example images with varying overlap ratios of two particles. Particle A has a diameter of 200 µm. Particle
B varies in diameter between 50 µm and 200 µm. Example images for four overlap ratios are shown. The

segmentation effects are represented by different colors in the figure.

parallel light, a lens and a camera, was so positioned such that the object plane was at the lower
inner wall of the channel. The optical system had a depth of field of 0.74 mm.

In this experiment, there are two main steps. The first step involves capturing images of particles
in a flowing state. A total of 3000 images are collected in this step, which are then processed using
the CNN algorithm. The second step involves capturing images of particles in a stationary state.
The procedure begins by turning on the circulation system to allow particles to flow, followed
by stopping the flow and waiting for the particles to settle at the bottom of the channel before
capturing an image. This process is repeated 300 times to collect focused images, serving as ground
truth for the probability density distribution of size. These in-focus images were processed using
a simple threshold method to determine their diameter.

In Fig. 14 and Tab. 1, the particle size probability density distribution measured with the flow
on (blurred particle images) is compared with the distribution of the settled particles (in-focus
particles). The particle size distributions based on the theoretical approach and CNN are both in
very good agreement with ground truth.

Table 1. Measurement results of particle size of particles flowing in pipelines.

Algorithm D10 µm D50 µm D90 µm
Ground Truth 95.4 100.3 107.8

DFD 94.7 100.6 108.3
CNN 92.5 99.8 116.5
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Figure 12. Parametric study in which the degree of blurring is varied by changing z. a), b) and c) uses a Particle A
diameter of 200 µm, a δ = 0.1 mm and a Particle B diameter of 50 µm, 100 µm and 200 µm respectively. d) The OLR is

held constant at 0.4 and δ is varied using the particle diameter combination 100 µm and 200 µm.

5. Concentration limits

In the following section an attempt is made to quantify the tolerable limits of number/volume
concentration which can be achieved using the DFD technique. This is a question which is of
great practical significance, on the other hand there are numerous influencing parameters which
make it difficult to deliver an estimate of universal validity. This difficulty will be elaborated by
formulating a statement of the problem.

The situation to be studied is pictured in Fig. 15. A certain number of spherical particles are posi-
tioned randomly in a defined flow volume, shown in the figure as a black box. The embedded red
box is the detection volume of the DFD system, the dashed line indicating the object plane. Note
that, as described theoretically in Sharma et al. (2021), the depth of the detection volume will be
particle size dependent, whereas the field of view is given by the magnification and sensor size.
Hence, the number of overlapping blurred images and their degree of overlap (OLR) will depend
on numerous factors: number of particles in the detection volume, size distribution of particles,
location of the detection volume within the flow field. It is evident that a theoretical approach to
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Figure 13. Schematic of experimental apparatus.

Figure 14. Comparison of particle size distribution obtained from in focus images (ground truth) and out-of-focus
images using CNN processing.
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Figure 15. Pictorial rendition of high concentration particle generation: solid red box represents the volume of the
imaging area, and black box represents the volume of the entire channel or flow field. The dashed plane represents

the object plane of the DFD system.

estimating either the degree or the number of overlapping images would be extremely complex;
therefore, in the present study this is investigated by simulating the system.

To begin this simulation, first a particle size distribution is prescribed. We have used a log-normal
probability density function (PDF), given by

p(D) =
1

Dσp

√
2π

exp

(
−(lnD − µ)2

2σ2
p

)
(12)

In this distribution the parameters µ and σp correspond to the expectation (mean) and the standard
deviation respectively. The volume weighted mean particle diameter is given as the third moment
of this distribution,

D30 =

(∫ ∞

0

D3p(D)dD

)1/3

= e3(2µ+3σ2
p)/2

(13)

Note that the kth moment of the log-normal distribution is given by ek(2µ+kσ2
p)/2.

If now N particles are placed randomly in a volume V , the number concentration is simply CN =

N/V [#/m3] and the volume concentration is CV = N ∗ D30/V = Vp/V [m3/m3]. The volume to
be populated with particles will be defined by the field of view of the optical system (x,y) times
the depth over which the largest particle can be detected. One must then position this detection
volume in the larger outer volume (black box in Fig. 15). The blurred images of any particle be-
hind or in front of the detection volume must also be added, since these images will contribute
background noise to the images of particles within the detection volume. Some typical synthetic
frames of defocussed particle images at various volume concentrations are shown in Fig. 16.

Figure 17 and Tab 2 shows the measured particle size distribution using the theoretical solution and
the CNN algorithm for various volume concentrations, compared with the known ground truth.
Even up to a volume concentration of 0.1% the distributions shows excellent agreement with the
correct answer. It can be seen from the results that when the concentration is higher, the deviation
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Figure 16. Synthetic camera frames of blurred particle images at different volume concentrations.

Figure 17. Measured particle size distribution from synthetic dataset at different volume concentrations.

Table 2. Particle size measurement results of simulated images with different volume concentrations.

Cv Algorithm D10 µm D50 µm D90 µm
Ground Truth 87.25 99.24 113.18

0.001%
DFD 85.50 98.28 114.61
CNN 84.80 98.64 114.88

0.01%
DFD 90.42 103.04 118.54
CNN 88.23 101.78 115.37

0.1%
DFD 92.54 109.49 133.87
CNN 89.20 103.55 125.81



21st LISBON Laser Symposium 2024

Figure 18. Percentage frequency at which the given number of particles overlap (line of sight). The summation of all
bars of one colour equals 100.

measured by the DFD method is greater, but the particle size distribution is very consistent with
the true value.

In Fig. 18 the relative occurrence of blurred images involving 1, 2 or more particles is plotted as
a function of volume concentration. As an example, for a volume concentration of 0.01%, 90% of
the images are of single particles, 9% involve two particles, and 1% involve three particles. Images
with more than three particles are virtually non-existent. Given that the present CNN processing
only handles single or dual particle images, this means that only 1% of the particles are not sized.
On the other hand, there is no immediate grounds to infer that the size distribution will be biased
by neglecting these 1% with multiple images overlapping.

Fig. 19 has been computed from the dataset generated to test the concentration limits of the DFD
technique with the CNN processing. The log-normal particle size distribution used to generate
this dataset has a mean of µ = ln(100) µm and a standard deviation of σp = 0.1 µm. To continue
with the above example, this distribution refers to the 9% with dual images overlapping. The
probability of low overlap values is high, decreasing to almost zero at 100% overlap (OLR = 1).
Only few particle pairs exhibit OLR> 1, which can only occur when a smaller particle overlaps
with a larger particle.

6. Conclusions

In summary, this study presents two advancements in the Depth from Defocus (DFD) technique for
characterizing dispersed two-phase flows. The first involves estimating the Gaussian blur kernel
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Figure 19. The frequency distribution of the overlapping of two particles with different volume concentrations.

from the average gray level gradient around the image contour. The second uses deep learning to
identify defocused particles.

The first advancement addresses high number density dispersions where adjacent particle images
overlap. We use a gradient based deblurring method to derive the blur kernel directly from the
gray level gradient. Results show that for a blur kernel standard deviation of 0.35 and an overlap
ratio (OLR) of 0.4, particle size measurement accuracy can reach ±5%. Although the overlap ratio
limit cannot be directly converted to a number density limit, it serves as an important indicator of
tolerable number densities. Position measurement accuracy is estimated at ±0.5 mm.

The second advancement introduces a method for generating synthetic blurred images for high
number density particle images, which is validated using an experimental setup. This method
allows for creating large datasets to train Mask R-CNN to identify and measure these images. The
limitation of this method is defined by the dimensionless blur kernel size, σ̃ ≤ 0.3, meaning the
degree of defocus should not exceed a standard deviation of 0.3 of the true particle diameter.

Simulation results reveal several insights. Even at high volume concentrations, the number of
overlapping particle images remains moderate, with instances of three or more overlapping par-
ticles being rare. Most overlapping images have low OLR, ensuring high measurement accuracy
even with significant defocus. Particle number concentration can also be reliably estimated with
corrections for detection volume dependencies. This confirms that the DFD technique, combined
with CNN processing, is a viable tool for studying dispersed two-phase flows. It offers high mea-
surement accuracy across a wide range of particle sizes and can identify particle positions and
number densities. This capability paves the way for three-dimensional velocity measurements
using background illumination and a single camera.
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