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ABSTRACT 

In this work an implementation of laser induced fluorescence thermometry technique at the micro-scale for 
application in multiphase flow of two immiscible liquid is presented. The selected fluid phases are water and n-
decane. One key limiting factor for dye selection is that each dye must be soluble in only one of the liquid phases. The 
selected fluorescent dyes are sulforhodamine 101 (SR) and eosin Y (EY) in water, and pyrromethene 597-8C9 in n-
decane. The technique uses ratiometric two-color two-dye approach for water and two-color one-dye approach for n-
decane. The two imaging wavelength bands are 540–572 nm and 610–640 nm. The technique yields a measurement 
sensitivity of 1.7% K-1 in water and ~0.1% K-1 in n-decane in the temperature range 20–60 ºC with a spatial and 
temporal resolution of 5.2 µm and 1 s, respectively. The sensitivity and uncertainty level achieved herein are 
satisfactory and near expected values for the aqueous phase. For the non-aqueous phase, modifications in the optical 
setup and/or choice of fluorescent dye(s) are needed to improve the sensitivity of the measurement technique.  
 

 

1 Introduction 

Microfluidic devices are used in miniaturized systems for analysis and synthesis of chemicals, and 
preparation and testing of biological samples. In these devices, mass and momentum transport 
and chemical reactions occur in micro-scale geometries under controlled conditions. One of the 
important variables to be controlled is temperature and its spatiotemporal variations, since 
temperature and its gradients experienced by the fluids play a key role in transport processes and 
chemical reactions (Stone & Kim, 2001). Microfluidic devices are also used for flow in porous 
media research, where optically transparent artificial microfabricated porous media, termed 
micromodels, are fabricated to mimic real porous media (Gerami et al., 2019; Kazemifar et al., 2015, 
2016; Li et al., 2017). Heat transfer in porous media plays a key role in many environmental and 
energy-related problems. Applications include heat transfer in geothermal energy systems (Dong 
et al., 2015), thermal recovery processes in hydrocarbon reservoirs (Kovscek, 2012), geological CO2 
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sequestration (Pruess, 2008), thermal remediation of contaminated soil (Vidonish et al., 2016), fuel 
cells (Andersson et al., 2016), and biological tissues (Nakayama & Kuwahara, 2008). 
 
Studying heat transfer processes in microfluidic devices and in porous media requires advanced 
measurement techniques for precise measurement of temperature with microscale resolution. 
While common macro-scale temperature probes such as thermocouples (TC) (Zhang et al., 2006) 
and resistance temperature detectors (RTD) (Chung & Kim, 2008) can be miniaturized using 
microfabrication techniques, they are not ideally suited for microscale applications due to several 
limitations. Specifically, they can only provide discrete point measurements. In addition, they do 
not directly measure the fluid temperature, instead they provide only the surface temperature 
measurements.  
 
Optical temperature measurement techniques are alternatives that can potentially provide high-
resolution fluid temperature measurements without the aforementioned limitations (Wang et al., 
2013). One of such techniques is laser induced fluorescence (LIF) that can be used to measure 
variables such as concentration, pH and temperature in fluids (Crimaldi, 2008). LIF thermometry 
is based upon the temperature sensitivity of the absorption and emission characteristics of 
fluorescent dyes and has been implemented in both macro- (Sakakibara & Adrian, 1999) and 
micro-scale configurations (Natrajan & Christensen, 2009). The technique has also been applied in 
aqueous (Koegl et al., 2020; Natrajan & Christensen, 2009; Sakakibara & Adrian, 1999; Shafii et al., 
2010) and non-aqueous (oils and alkanes) solutions (Deprédurand et al., 2008; Perrin et al., 2015). 
The range of applications include investigation of temperature fields during solidification of an 
aqueous ammonium chloride solution (Shafii et al., 2010), droplet evaporation (Chaze et al., 2017; 
Koegl et al., 2020), and droplets impinging on heated surfaces (Castanet et al., 2020; Dunand et al., 
2012).  
 
To the best of our knowledge, there are no instances of application of LIF thermometry to 
simultaneously measure the temperature of two immiscible liquids: an aqueous and a non-aqueous 
solution. Specifically, the implementation of this technique is intended for use in multiphase flow 
in porous media. The methodology proposed herein would enable investigation of processes 
applicable to geothermal energy systems and enhanced oil recovery, among others. 
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2 Methodology 

2.1 Principles of LIF Thermometry 

For a dye of concentration C illuminated with an incident light flux of intensity I0, the fluorescence 
power emitted per unit volume I, is 

𝐼 = 𝐼!𝐶𝜙𝜀 (1)	

where ε is the absorption coefficient of the dye and 𝜙 is its quantum efficiency (QE). The variation 
in I with temperature is attributable to temperature dependence of quantum efficiency and 
absorption coefficient, i.e., 𝜙𝜀 = 𝑓(𝑇). However, spatial and/or temporal variations in 𝐼! and 𝐶 can 
be misinterpreted as changes in temperature. One way for mitigating this effect is using the 
ratiometric or two-color technique, which can be implemented with one dye (two-color one-dye, 
2c-1d) or two dyes (two-color two-dye, 2c-2d) (Chaze et al., 2016). In the ratiometric approach, the 
fluorescence signal intensities at two wavelength bands are recorded, whereby taking the ratio of 
the two signals, the dependence on illumination intensity can be eliminated. In the 2c-1d approach, 
two distinct emission bands of the same dye are selected for imaging wherein the emission 
intensity for one of the wavelength bands should be nearly insensitive to changes in temperature. 
In equation 2, V1 and V2 are the image intensity in camera 1 and 2, and subscripts A and B refer to 
two distinct wavelength bands.  

𝐹"#$%& =
𝑉%
𝑉"
=
𝐼'
𝐼(
=
𝐼!𝐶𝜙'𝜀'
𝐼!𝐶𝜙(𝜀(

=
(𝜙𝜀)'
(𝜙𝜀)(

(2) 

In this example, the emission intensity of wavelength band A is assumed to be sensitive to 
temperature (𝜙𝜀)' = 𝑓(𝑇), while wavelength band B is insensitive or weakly sensitive to 
temperature, (𝜙𝜀)( ≠ 𝑓(𝑇).  
 
In the 2c-2d approach, each of the two imaging wavelength bands should coincide with an 
emission band of one of the dyes. Ideally, camera 1 should pick the emission only from dye A, and 
camera 2 should pick the emission only from dye B, without any crosstalk. However, in many 
cases complete spectral separation of the emission from the two dyes may not be possible. As a 
result, camera 1 will pick emissions from dye B, and camera 2 will pick emissions from dye A. This 
effect can be accounted for by measuring functions Π' and Π(, where Π' represents the fraction of 
emission from dye A recorded by camera 2, while Π( represents the fraction of emission from dye 
B by camera 1 (Eq.  3). 
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The ideal dye candidates for this approach can be excited by the same laser wavelength while their 
emissions spectra have no overlap. 

2.2 Experimental Apparatus 

An Olympus IX-73 inverted microscope coupled to a Karin TwinCam image splitter and two 
Andor Zyla 5.5-megapixel sCMOS cameras (2560 ´ 2160 pixels, 6.5 µm pixel size) are used for 
imaging. The image splitter allows for simultaneous imaging of the field of view at two 
wavelength bands. The recording spectral band for camera 1 and camera 2 are 540–572 nm and 
610–640 nm, respectively (Fig. 1). Using a 10× 0.25-numerical aperture (NA) objective, imaging is 
carried out at a magnification of 0.65 µm/pixel, with a field of view of ~2 mm in diameter. A 
Quantel Evergreen dual-head pulsed Nd:YAG laser (200 mJ/pulse maximum energy) at 532 nm 
coupled to the microscope is used as the excitation source for the fluorescent dyes.  
 

 

Fig. 1 Optical setup for two-color fluorescence thermometry. 

 
Data acquisition is performed using a NI-9212 module attached to a NI-cDAQ 9171 compact 
chassis for temperature measurements. A BNC 575 timing unit is used to synchronize the cameras 
and the laser, and control the lamp and Q-switch timing for the Nd:YAG laser. Images are recorded 
using Andor SOLIS software, while data acquisition is carried out in MATLAB. All image and data 
post-processing is carried out in MATLAB.  

 

A calibration module, consisting of an aluminum block with internal drilled channels is used, to 
record the fluorescence signal from the fluorescent dyes at known temperatures. Water from a 



20th LISBON Laser Symposium 2022 

 Page 5 of 13 

temperature-controlled bath is circulated in the channels using an external pump (Fig. 2). The dye 
flows through a channel attached to the heat sink and is sealed using an O-ring and a 1-mm-thick 
microscope glass slide clamped to the aluminum heat sink. Two T-type thermocouples are inserted 
into the channel to record the dye temperature during image acquisition. Using this setup, the 
temperature sensitivity of aqueous and non-aqueous dye solutions are quantified.  
 

 

Fig. 2 Experimental setup for temperature calibration of fluorescence signal for different dye solutions. 

 
Registration of the images of the two cameras is performed using a microscope scale as a target 
and using the imregister function in MATLAB, as shown in Fig. 3. 
 

 
Fig. 3 Image registration process showing the captured image from camera 1, camera 2, and the superimposed image 

from the two cameras. 

2.3 Fluorescent Dyes 

The dyes are selected based on the following primary criteria: 
1. Absorption band in 532 nm so that all dyes can be excited with the same Nd:YAG laser 
2. Soluble only in either the aqueous or the non-aqueous phases.  

In addition, for each fluid phase, at least one dye should have temperature-dependent 
fluorescence spectra. It is notable that some of the most commonly used dyes for LIF thermometry 
such as Rh B and Rh 6G (Crimaldi, 2008; Sutton et al., 2008) are soluble in both water and 
oil/alkanes and hence are not suitable for this study. 
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Solution of Sulforhodamine 101 (SR101) and (Eosin Y) EY is used as the aqueous phase. The 
absorption and emission spectra of SRh 101 and EY are presented in Fig. 4, where each spectrum 
is normalized with respect to its maximum value. EY has peak absorption and emission at 525 nm 
and 546 nm, respectively. SR 101 has peak absorption and emission at 578 nm and 593 nm, 
respectively. In the current optical setup (shown in Fig. 1) camera 1 records signal primarily from 
EY (dye A), while camera 2 records emitted light from both SR (dye B) and EY. Thus, PA correction 
function is used to account for the emissions from dye A (EY) picked up by camera 2.  
 

 
Fig. 4 Absorption and emission spectra of Sulforhodamine 101 (SRh) in water and Eosin Y (EY) in water.The grey 

shaded areas show the imaging wavelength for camera 1 (540–572 nm) and camera 2 (610–640 nm). Data from: 

Chroma Spectra Viewer. 

 
Solution of pyrromethene 597-8C9 in n-decane is used as the non-aqueous phase. The absorption 
and emission spectra of PM 597-8C9 in decane is presented in Fig. 5, where each spectrum is 
normalized with respect to its maximum value. The peak absorption and emission for PM 597 
occur at ~525 nm and ~600 nm, respectively. The maximum emission consists of a relatively wide 
band near 575–600 nm.  
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Fig. 5 Absorption and emission spectra of Pyrromethene 597-8C9 (PM 597-8C9) in n-decane. The grey shaded areas 

show the imaging wavelength for camera 1 (540–572 nm) and camera 2 (610–640 nm). Data from:  

Labergue et al., (2010) 

3 Results and Discussion 

The images recorded by the two cameras at each temperature are transformed based on the image 
registration process described in §2.2. The average intensity of an 8´8-pixel window in the center 
of the image is used for calibration. This yields an effective spatial resolution of ~5.2 µm. At each 
temperature 10 images are acquired at an imaging frequency of 10 Hz, yielding a temporal 
resolution of 1 s.  
 
Figure 6 shows the effect of consecutive excitations on the fluorescence signal. The intensities from 
individual cameras and their ratio are normalized to facilitate comparisons. For these 
measurements, the dye solution was excited continuously with 500 laser pulses at room 
temperature. In both fluids, the ratiometric approach seems to work well in minimizing the impact 
of pulse-to-pulse laser energy variations. For the aqueous solution (Fig. 6a), the standard deviation 
of signal for camera 1 and camera 2 is 3.7% and 3.1%, respectively, while the ratio has a standard 
deviation of 1.9%. In the non-aqueous solution (Fig. 6b), the standard deviation of signal for 
camera 1 and camera 2 is 3.3% and 3.7%, respectively, while the ratio has a standard deviation of 
0.7%. In the aqueous solution (Fig. 6a) there is a slight downward trend in the ratio signal with 
increasing laser pulses. This could be due to change in temperature during data acquisition or 
photobleaching in one or both dyes which require further investigation. In the non-aqueous 
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solution (Fig. 6b), there are some instances where the signal from individual cameras is ~15% 
lower than average. This is most likely due to abrupt changes in laser pulse energy as the ratio 
signal remains within ~1% of the average. 
 
(a)  

 

(b) 

 
Fig. 6 Effect of consecutive excitation on recorded fluorescence signal for each camera and their ratios. (a) 1.0 mg/L 

Sulforhodamine 101 and 1.6 mg/L Eosin Y in water (b) 5 mg/L Pyrromethene 597-8C9 in n-decane. The intensities 

from individual cameras and their ratio are normalized with their average values to facilitate comparisons 

 
Error! Reference source not found. shows the calibration curve for the aqueous solution 
consisting of 1.0 mg/L SR and 1.6 mg/L EY, the 5.0 mg/L solution of PM597 in n-decane. In this 
implementation of the 2-color 2-dye approach the measurement sensitivity for the aqueous 
solution is ~1.7 %K–1. Also, the measurement sensitivity for the non-aqueous solution in this 2-
color 1-dye approach is ~0.1 %K–1. The measurement uncertainty for both cases is ~1% based on 
one standard deviation from the 10 images used at each temperature.  
 
The previous studies using LIF thermometry in aqueous solutions report a sensitivity of ~2-4% K–% 
in 2c-2d configuration and ~1% K–% in 2c-1d configuration. Sakakibara & Adrian, (1999) used 
solution of Rhodamine B and Rhodamine 110 in water, excited with a 488-nm Argon ion laser in a 
2c-2d macroscopic planar configuration and obtained a sensitivity of ~1.7% K–1. Natrajan & 
Christensen, (2009) used Rhodamine B and Sulforhodamine 101 in water excited with a pulsed 
532-nm Nd:YAG laser in a 2c-2d microscopic configuration and obtained a sensitivity of 2.7 % K–%. 
Shafii et al., (2010) used fluorescein and Kiton Red dyes in water excited with a 514.5-nm Argon-
ion laser in aqueous ammonium chloride solution in macroscopic planar configuration obtaining  
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a sensitivity of ~4% K–%. Collignon et al., (2022) used a solution of Rhodamine 560 and Kiton Red 
dye in water with a laser light excitation at 532 nm, achieving a temperature sensitivity of ~3% K–%. 
Castanet et al., (2020) and Chaze et al., (2017) used sulforhodamine 640 and disodium 
fluorescein 27 in a 2c-2d configuration with 532 nm pulsed laser reporting a sensitivity of ~3% K–%. 
Dunand et al., (2012) used 2c-1d LIF thermometry with fluorescein 27 dye and 532 nm laser 
reporting a sensitivity of ~0.8% K–%. 
 
Compared to aqueous solutions, there are relatively fewer studies using LIF thermometry in 
liquids immiscible with water such as oils and alkanes. Deprédurand et al., (2008); Labergue et al., 
2010; Perrin et al., (2015) used 2c-1d LIF thermometry with pyrromethene 597-8C9 in alkanes 
yielding a sensitivity of 0.8–1 % K–% for studying heat transfer and evaporation of fuel droplets. 
Prenting et al., (2021) quantified sensitivity of a several fluorescent dyes in organic solvents. They 
reported a sensitivity of ~0.6% K–% in 2c-1d configuration for PM597 in o-xylene excited at 532 nm. 
The reported sensitivity is quite lower than reported values in the literature. This indicates that 
the variation of fluorescence intensity within both wavelength bands is similar. 

4 Summary and Future Work 

The results presented herein demonstrate the principles and the feasibility of LIF thermometry to 
obtain spatially and temporally resolved temperature fields for multiphase flow two immiscible 

 

Fig. 7 Temperature dependence of the normalized fluorescence intensity of 1.0 mg/L SR and 1.6 mg/L EY in water, 

and 5.0 mg/L of PM597-8C9 in n-decane. The markers represent one standard deviation in normalized intensity.  
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liquids. In this implementation, 2-color 2-dye approach with a solution of Eosin Y and 
Sulforhodamine 101 in water is used in for aqueous phase, and 2-color 1-dye approach with a 
solution of Pyrromethene 597-8C9 in n-decane is used for the non-aqueous phase. The achieved 
spatial and temporal resolution of the measurements are 5.2 µm and 1 s, respectively. The 
measurement sensitivity for the aqueous and non-aqueous phase are 1.7 %K–1 and 0.1 %K–1, 
respectively, with an uncertainty of <1% in both cases. The sensitivity and uncertainty level 
achieved herein are satisfactory for the aqueous phase. However, for the non-aqueous phase, 
modifications in the optical setup and/or choice of fluorescent dye(s) are needed to improve the 
sensitivity of the measurement technique.  
 
The future planned work is focused on fine tuning experimental parameters to improve the 
sensitivity and spatiotemporal resolution of the measurements. Based on the frequency of the 
pulse laser, the temporal resolution can theoretically be improved to 1/30 s enabling investigation 
of transient processes. The intended application for this technique is to investigate heat transfer in 
multiphase flow in porous media.  
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